
CROSSTALK The Journal of Defense Software Engineering 11August 1998

Project management metrics
typically are used to measure the
progress of a project and the

quality of its output. They also may be
used to monitor key parameters of the
development process—for example, the
stability of the requirements or the
effectiveness of the technical review
process. The principal benefit of a
metrics program is improved control of
the project; metrics furnish an overview
of progress against plan, provide early
warning of problem situations, and
enable management to take corrective
action.

That control can be significantly
enhanced by taking a more pro-active
approach to the metrics program—an
approach in which the information
obtained while gathering metrics data is
used to improve the processes used by
the project and the effectiveness of the
project team. The metrics team is in a
good position to observe the lower-level
workings of the project, including the
problems and inefficiencies that are
hindering the progress of the developers
and whether they are being addressed
effectively. Information of this kind is
an invaluable source of ideas for process
improvement. It is also a starting point
for building the management-developer
bonds needed for a successful project.

The pro-active approach to metrics
also focuses on communication. The
success of a project depends, to a sig-
nificant degree, on how the participants
feel about the project, each other, and
their management. People need to feel
that they are accomplishing something
of significance, that they can rely on
each other and their management, that
they are kept informed about project
issues, and that their concerns are
heard. Much of this can be accom-
plished by relatively simple communi-

cation mechanisms—particularly if that
communication is backed up by action.

A successful project usually is the
result of marrying technology and psy-
chology. Both are necessary; neither is
sufficient by itself. Technology usually
prevails; we devote enormous energy to
selecting the optimum software tools
and hardware platforms. But we cannot
forget that people want to work in a
positive environment where they can
make a solid contribution, exercise their
creativity, and develop their skills.

During the course of the SIDPERS-
3 project, we gradually evolved a pro-
active approach that involved five spe-
cific actions designed to help create that
type of positive environment on a team
that peaked at 145 people. These ac-
tions were designed to involve the de-
velopers in the metrics process, to en-
sure they were heard with regard to
process improvements, to improve
communication at all levels, and to
strengthen teamwork on the project.

Metrics Criteria
We selected the metrics to be used on
the project and the way in which they
would be used with an eye toward the
climate we were trying to create. We
understood that no one likes to be
measured and that metrics are threaten-
ing enough as it is, so the intent was to
not make it any worse. People who feel
threatened pull into their shells and
become defensive; they tend to tell you
only what you want to hear. We wanted
a climate in which they came out of
their shells and told us everything.

We ensured that the metrics used
also provided information that was
useful to the development teams and
that it was provided in a timely enough
fashion that they could track their own
progress. The metrics process was set up

so that most of the data came from the
developers; this helped ensure that the
biweekly metrics reviews focused on
progress and problems rather than on
disputing the data. And finally, we
made the metrics as nonpunitive as
possible. The management team did
not use them to judge people; metrics
were not used as the basis for blame,
threats, or performance reviews.
Metrics were not used to compare
teams; some of this is inevitable, but
management did not encourage it.

The metrics team (consisting of one
full-time person and two others part
time) served as the proponent for this
approach to metrics. We articulated the
overall intent, convinced management
to adopt it, and successfully argued the
case, for example, with those who ini-
tially saw metrics as a convenient way
to measure people rather than project
accomplishments.

Biweekly Metrics Review
Every two weeks, the senior manage-
ment met with the eight to 10 develop-
ment team leaders and the metrics team
to review the project metrics. Over time,
we moved these meetings away from the
initial inquisition-excuses-blame mode
to a more positive mode in which we
focused largely on removing the impedi-
ments that kept one team or another
from meeting its planned objectives.

We changed the meetings by both
convincing management of the advan-
tages of a solution-based approach and
taking a pro-active approach to identi-
fying and removing impediments to
progress. The problems faced by the
teams were real: hardware that arrived
late, repeated compiler problems,
interteam process problems that neces-
sitated excessive rework, and many
more. Before each meeting, we asked

Pro-Active Metrics
George H. Wedberg

McDonald Bradley, Inc.

Metrics can be used for more than measuring things. They can be viewed as the starting point for process improve-
ment on a project and as a mechanism to improve communication and teamwork. This article summarizes what
was learned in this regard over the course of several years as the metrics program was developed and managed for
the U.S. Army Standard Installation/Division Personnel System – Version 3 (SIDPERS-3) project.

Measures and Metrics



12 CROSSTALK The Journal of Defense Software Engineering August 1998

Measures and Metrics

the team leaders to identify their cur-
rent problems in writing. We addressed
each problem in the meeting, developed
a plan for dealing with it, and followed
up after the meeting to ensure the plans
were being carried out. The senior
managers agreed to help effect timely
resolution of the problems and left
many review meetings with a list of
calls to make.

In time, the development team
leaders realized that putting a problem
on the table would result in help rather
than blame, and this encouraged them
to surface problems rather than hide
them. Giving the project manager in-
formation about real and potential
problems strengthened his control of
the project in at least two ways. First,
he could deal with real problems while
they were still small and relatively easy
to resolve. Second, he could investigate
potential problems and take mitigating
action long before they affected the
project. His control also was strength-
ened because team leaders and senior
management were now working as a
team with a corresponding increase in
mutual trust. That the latter was not
easily quantified made it no less real.

Implicit in this teamwork was the
unspoken understanding that once the
impediments to your progress have
been eliminated, there is no longer any
reason you should not make your dates.

Technical Reviews
Technical reviews in one form or an-
other, e.g., walk-throughs and inspec-
tions, have long been acknowledged as
technically useful. They are used to find
problems early and to help prevent
future problems. Don O’Neill de-
scribed a software inspection program
and its benefits in “Setting Up a Soft-
ware Inspection Program.” [1]

As one response to the number of
software defects showing up in the
metrics, the metrics team encouraged
the development of a formal code in-
spection process by the software devel-
opers. The resulting process used exten-
sive checklists, assigned roles and
responsibilities for the review, and
tracked the numbers and types of de-
fects found.

The code inspections also increased
the sense of teamwork on the project.
Almost any well-run technical review
process accomplishes this for several
specific reasons. First, the process
teaches people how to depend on one
another, which is a key element of
teamwork. They learn that accepting
detailed evaluation of their material by
their peers leads to a better product.
They experience the satisfaction of
being heroes when it counts most—at
product delivery time.

The barrier that has to be overcome
is ego. Few enjoy having their mistakes
and bad assumptions pointed out, par-
ticularly in a group meeting. A good
technical review process minimizes this
problem by decriminalizing errors [2].
Errors are treated as a fact of project
life; everyone makes them, no one is
blamed for them. The idea is to make
them visible, classify them, and learn
from them. In time, people learn to
react to their errors objectively rather
than defensively, and a great battle has
been won. The importance of subjugat-
ing ego cannot be overemphasized. A
1996 article in Fortune magazine de-
scribed a number of world-class
teams—from the U.S. Navy Seals to the
Tokyo String Quartet. A common
theme throughout the article is the lack
of individual egos on these teams; every
member is totally focused on the mis-
sion of the team [3].

The technical review process also
builds teamwork because participants
learn a new and useful process together.
They learn how to evaluate a product
against written requirements rather
than personal preference. Experience
with inadequate and incomplete re-
quirements also leads to enlightenment
about developing good requirements.
Participants learn how to classify errors
according to their source, which is a
basis for preventing future errors. Par-
ticipants also learn how to run a disci-
plined meeting, e.g., the purpose of the
review is to identify errors, not resolve
them; resolution of errors is the privi-
lege and responsibility of the producer
of the material [4]. In time, the partici-
pants learn that they can be more suc-
cessful together than as individuals.

Empty rhetoric about “teamwork” is
widespread in the business community;
technical reviews are one concrete way
to implement the rhetoric.

Communication
The goal of our communication pro-
cesses was to establish as open an envi-
ronment as possible—one in which
people were comfortable surfacing
problems and telling us what they
needed to be more effective. We used
several mechanisms in addition to a lot
of one-on-one discussion:
• We conducted an informal written

survey of all members of the project
that asked them what they thought
was going well and not so well, what
problems they were having, what
they would like to see changed, and
the like. The objective was not mea-
surement but rather to see what they
had to say. Although the survey was
anonymous, we invited those who
were concerned about having their
E-mail traced back to them to re-
spond any way they chose, includ-
ing notes under my door at night.
Because a few did the latter indi-
cates the difficulty of establishing
trusting communication.

• We conducted skip-level meetings
in which programmers, testers, etc.,
met in groups of a dozen or so with
the project manager—no other
managers or team leaders were
present. The participants were en-
couraged to bring questions from
their teammates as well. This was an
opportunity to discuss rumors about
high-level topics such as project
direction and funding, to surface
frustrations directly to senior man-
agement, and to understand and
influence the project manager’s
thinking. This direct contact, some-
what unusual on a project of this
size, let the project manager explain
his priorities and reasoning without
the usual middle management filters
and gain a direct understanding of
what was important to the employ-
ees he supervised. Out of these
meetings also came a number of
“social” changes to the project, e.g.,
the occasional holiday party evolved



CROSSTALK The Journal of Defense Software Engineering 13August 1998

into monthly project luncheons,
and casual Friday became casual
summer, then became permanent
casual.

• We conducted lessons-learned exer-
cises after each major increment of
the project. The metrics group col-
lected inputs from all project areas,
organized them by subject area, and
facilitated working meetings to
discuss problems, working relation-
ships, and potential process im-
provements. The documented out-
puts of the meetings were the basis
for process improvement activities.
The communication mechanisms,

in addition to revealing problems, also
raised the level of trust on the project.
As might be expected, the developers
sometimes used their communication
opportunities to challenge manage-
ment, in effect, to improve some aspect
of the project. When management
responded promptly with meaningful
actions, both sides knew that everyone’s
level of commitment had just risen.

Process Improvements
The biweekly metrics reviews, the les-
sons-learned exercises, and the other
communication mechanisms brought
out problems and frustrations of all
kinds—from inadequate technical plan-
ning to lack of vendor support to poor
working relationships between project
teams. All such concerns were analyzed
to determine their underlying causes.
More often than not, the cause was a
poor or nonexistent work process; this
was particularly true of problems in-
volving friction between project teams.

Of course, the configuration man-
agement (CM) team was unhappy that
developers were turning over code to
them before it was properly integrated;
investigation showed there was no well-
defined process for integration and
turn-over. And the coders were annoyed
at having to rewrite modules numerous
times because the database kept chang-
ing; investigation showed there was no
visible plan or schedule for database
changes.

Some of the resulting process im-
provements were accomplished simply,
e.g., a verbal agreement between two
individuals to exchange key informa-
tion at regular intervals. Other im-
provements required analysis, docu-
mentation, and review. The CM
problem noted above led to a diagram
showing the sequence of all steps re-
quired to manage software modules
from the developer’s unit test onward;
this included the definition of each
step, the person responsible for accom-
plishing it, the machine on which it was
to be performed, and so forth. Project-
wide distribution of that diagram sig-
nificantly reduced the friction between
the developers and CM while increas-
ing project productivity. This, like most
process improvements, strengthened the
project manager’s control of the project
by making the software development
process more predictable.

Conclusion
The pro-active approach to project
management metrics—a combination
of measurement, process improvement,
and communication—strengthened the
project manager’s control of the project
in several ways.
• The measurements provided an

objective picture of the project’s
progress, status, problems, successes,
and failures. This factual informa-
tion provided the basis for subse-
quent management and technical
decisions.

• Process improvements made many
aspects of the project more predict-
able. Every process improvement
that standardized a procedure or
eliminated an impediment, for ex-
ample, made it more likely we
would get the desired result in the
expected time frame.

• The open communication environ-
ment meant that we got useful input
from a wide variety of people at all
levels of the project. We also believe,
but cannot prove objectively, that
there were many intangible benefits
from that environment—people
who are both informed and heard,
and thereby involved, have a higher

level of commitment. We saw that
commitment on many occasions.
Each of these practices emphasizes

the role and needs of the project’s indi-
vidual contributors and thereby
strengthens their connection to the
project and its success. It is difficult to
remain disinterested or cynical when the
work is going well and the project is
helping you meet your personal goals. u

About the Author
George H. Wedberg is
a program director
with McDonald Brad-
ley, Inc. He has over 20
years experience with
all aspects of the soft-
ware development

lifecycle, in both the federal and the
commercial sectors. Past accomplish-
ments include development of the first
software engineering program for General
Electric Information Services Company,
development of the metrics and risk
management programs for the SIDPERS-
3 project, and creation of measures of
effectiveness for the Department of
Health and Human Services and for the
U.S. Marine Corps. He holds a doctorate
in physics from Indiana University.

McDonald Bradley, Inc.
Suite 805
8200 Greensboro Drive
McLean, VA 22102
Voice: 703-827-9376
Fax: 703-827-8604
E-mail: wedbergg@erols.com

References
1.O’Neill, Don, “Setting Up a Soft-

ware Inspection Program,”
CROSSTALK, Software Technology
Support Center, Hill Air Force Base,
Utah, February 1997.

2.Rifkin, Stan and Charles Cox,
“Measurement in Practice,”
Carnegie Mellon University Software
Engineering Institute Technical Report
CMU/SEI-91-TR-16, ESD-TR-91-
16, July 1991.

3.Fortune, Feb. 19, 1996, pp. 90-99.
4.Freedman, D.P. and G.M.

Weinberg, Handbook of Walk-
throughs, Inspections, and Technical
Reviews, Dorset House, New York,
1990.

Pro-Active Metrics


